Inositol 1,4,5-trisphosphate receptor function in human oocytes: calcium responses and oocyte activation-related phenomena induced by photolytic release of InsP(3) are blocked by a specific antibody to the type I receptor.

نویسندگان

  • P T Goud
  • A P Goud
  • L Leybaert
  • P Van Oostveldt
  • K Mikoshiba
  • M P Diamond
  • M Dhont
چکیده

Type I inositol 1,4,5-trisphosphate-sensitive receptors (InsP(3)R) are expressed in human oocytes and may be involved in operating the Ca(2+) release triggered by the fertilizing sperm. This study examines the contribution of type I InsP(3)R in operating Ca(2+) release in human oocytes secondary to InsP(3) itself, using a specific function-blocking antibody in conjunction with photolytic release of microinjected InsP(3). Intracellular Ca(2+) responses were assessed in oocytes microinjected with only caged InsP(3) in experiment set A, while in experiment sets B and C, sibling oocytes were injected with caged InsP(3) and the blocking antibody or a corresponding volume of medium, prior to flash photolysis. In experiment set C, certain fertilization-related phenomena (cortical granule exocytosis and chromatin configurations) were assessed using optical sections and three-dimensional image reconstructions obtained from a confocal laser scanning microscope. In experiment set A, photolytic release of InsP(3) triggered a Ca(2+) response (increase from approximately 100 to 220 nmol/l followed by an exponential recovery, n = 8) and a wave in the oocytes that spread from the stimulation point to the opposite pole. In set B, photolytic InsP(3) release generated Ca(2+) responses in control oocytes (n = 9), but not in the antibody-injected oocytes (n = 7). In set C, cortical granule exocytosis and anaphase chromosome configurations were noted in the control oocytes after flash photolysis (n = 6). These changes were completely absent in antibody injected oocytes as their cortical granules were intact and the chromosomes were in metaphase. These oocytes had also lacked Ca(2+) responses as in set B (n = 5). This study demonstrates the functional presence of type I InsP(3)R-operated Ca(2+) channels in human oocytes and further suggests an active role of InsP(3) in triggering the Ca(2+) rise and secondary activation phenomena at fertilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes.

Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) induces Ca2+ oscillations and waves in Xenopus laevis oocytes. Microsomes from oocytes exhibit high-affinity binding for Ins(1,4,5)P3, and demonstrate Ins(1,4,5)P3-induced Ca2+ release. The Ins(1,4,5)P3 receptor (InsP3R) was purified from oocyte microsomes as a large tetrameric complex and shown to have a monomer molecular mass of 256 kDa, compared wi...

متن کامل

Atp-Dependent Adenophostin Activation of Inositol 1,4,5-Trisphosphate Receptor Channel Gating

The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) is a ligand-gated intracellular Ca(2+) release channel that plays a central role in modulating cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP(3)R that is structurally different from InsP(3) and elicits distinct calcium signals in cells. We have investig...

متن کامل

Plasma membrane calcium channels in human carcinoma A431 cells are functionally coupled to inositol 1,4,5-trisphosphate receptor-phosphatidylinositol 4,5-bisphosphate complexes.

In most nonexcitable cells, calcium (Ca(2+)) release from inositol 1,4,5-trisphosphate (InsP(3))-sensitive intracellular Ca(2+) stores is coupled to Ca(2+) influx (calcium release-activated channels (I(CRAC))) pathway. Despite intense investigation, the molecular identity of I(CRAC) and the mechanism of its activation remain poorly understood. InsP(3)-dependent miniature calcium channels (I(min...

متن کامل

Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation

To investigate the effect of Bcl-2 on Ca2+ signaling in T cells, we continuously monitored Ca2+ concentration in Bcl-2-positive and -negative clones of the WEHI7.2 T cell line after T cell receptor (TCR) activation by anti-CD3 antibody. In Bcl-2-negative cells, high concentrations of anti-CD3 antibody induced a transient Ca2+ elevation, triggering apoptosis. In contrast, low concentrations of a...

متن کامل

Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons.

Synaptically released glutamate evokes slow IPSPs mediated by metabotropic glutamate receptors (mGluRs) in midbrain dopamine neurons. These mGluR IPSPs are caused by release of Ca(2+) from intracellular stores and subsequent activation of small-conductance Ca(2+)-activated K(+) channels (SK channels). To further investigate the intracellular mechanisms involved, the effect of photolyzing intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2002